Information Theoretic Clustering
نویسندگان
چکیده
Clustering is one of the important topics in pattern recognition. Since only the structure of the data dictates the grouping (unsupervised learning), information theory is an obvious criteria to establish the clustering rule. This paper describes a novel valley seeking clustering algorithm using an information theoretic measure to estimate the cost of partitioning the data set. The information theoretic criteria developed here evolved from a Renyi’s entropy estimator that was proposed recently and has been successfully applied to other machine learning applications. An improved version of the k-change algorithm is used in optimization because of the stepwise nature of the cost function and existence of local minima. Even when applied to nonlinearly separable data, the new algorithm performs well, and was able to find nonlinear boundaries between clusters. The algorithm is also applied to the segmentation of magnetic resonance imaging data (MRI) with very promising results.
منابع مشابه
NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملA Non-parametric Maximum Entropy Clustering
Clustering is a fundamental tool for exploratory data analysis. Information theoretic clustering is based on the optimization of information theoretic quantities such as entropy and mutual information. Recently, since these quantities can be estimated in non-parametric manner, non-parametric information theoretic clustering gains much attention. Assuming the dataset is sampled from a certain cl...
متن کاملAn Efficient Approach Generating Optimized Clusters for Theoretic Clustering Using Data Mining
The aim of the data mining process is to extract information from a large data set and transform it into an understandable structure for further use. Data mining is the process of finding anomalies, patterns and correlations within large data sets to predict outcomes. Using a broad range of techniques, you can use this information to increase revenues, cut costs, improve customer relationships,...
متن کاملInformation Theoretic Clustering using Kernel Density Estimation
In recent years, information-theoretic clustering algorithms have been proposed which assign data points to clusters so as to maximize the mutual information between cluster labels and data [1, 2]. Using mutual information for clustering has several attractive properties: it is flexible enough to fit complex patterns in the data, and allows for a principled approach to clustering without assumi...
متن کاملCo-Clustering via Information-Theoretic Markov Aggregation
We present an information-theoretic cost function for co-clustering, i.e., for simultaneous clustering of two sets based on similarities between their elements. By constructing a simple random walk on the corresponding bipartite graph, our cost function is derived from a recently proposed generalized framework for information-theoretic Markov chain aggregation. The goal of our cost function is ...
متن کاملInformation Theoretic Hierarchical Clustering
Hierarchical clustering has been extensively used in practice, where clusters can be assigned and analyzed simultaneously, especially when estimating the number of clusters is challenging. However, due to the conventional proximity measures recruited in these algorithms, they are only capable of detecting mass-shape clusters and encounter problems in identifying complex data structures. Here, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 24 شماره
صفحات -
تاریخ انتشار 2002